A little over two years ago, we built our first GPU cracking box. At the time, there was pretty limited information on what people were doing to build a decent cracking box, especially if you were trying to do so without breaking the bank. As with any piece of technology, things go out of date, things get upgraded, and documentation needs to get updated. Since it’s now two years since I wrote about our first system , I figured it was time to write an update to show what we’re actually using for cracking hardware now.
The Case
We currently have two cracking systems, Development and Production. Our development system is seated in a really nice (and relatively cheap) case that we picked up from MiningRigs.net. The big downside of this case is that we can’t immediately buy another one. The group making the case had recently switched to a Kickstarter model (we were one of the only backers), but they secured outside funding for the cases and are now building more. As soon as they have them ready, we’re planning on picking up another one.
Our production system is currently housed in a much lower-tech case… Three Milkcrates. As you can see, we’ve graduated from server shelving to an arguably crazier option. After seeing a number of Bitcoin miners using the milkcrate method for cases, we moved our cards over. This has actually worked quite well. The only issue that we’ve run into (outside of noise) is high temperatures on some of the cards. We’ve been able to keep the heat issues away by manually setting the fan speeds on all of the cards to 100%.
*Update (5/19/15): We actually got another rack-mount case for our production system. Goodbye milk crates.
The Motherboard
One of the big changes that we were happy to see over the last two years was the move by hardware manufacturers to embrace Bitcoin miners (even though most have moved off of GPU mining). ASRock now makes a Bitcoin specific motherboard (H81 PRO BTC) that is specifically geared towards running multiple GPUs. With six PCI-E slots, it’s a very inexpensive ($65) choice for creating a cracking box. Five of the slots are PCI-E 1x slots (and mounted pretty closely together), so you will need to use risers to attach your cards.
The Risers/Extenders
Another Bitcoin focused product that we’ve been using are the USB 3.0 PCI-E risers (or extenders). These little devices allow you to put a PCI-E 16x card into a PCI-E 1x slot. The card then attaches to the motherboard with a USB cable. Basically, these extend your PCI-E slots using USB cables. These are much cleaner and more reliable than the ribbon riser cables we started using.
The Cards
I will say that I really like the newer cards (R9 290) that we are currently running. They have decent cracking rates and I really haven’t had too many issues with them so far. The biggest issue has been heat. This can mostly be mitigated by having decent airflow around the case and setting the fan speeds on your cards to the max. The fan speeds can be set using the aticonfig command (pre-R series cards) or od6config for newer cards. One of the biggest pains that I’ve dealt with on our systems is getting all the fans set correctly for all the cards, specifically when you have a mix of older and newer cards. For simplicity’s sake, I would recommend going with one card model for your cracking box. The newer cards are nice, but if you can find someone trying to offload some older 7950s, I would recommend buying those.
The Power Supplies
Our recommendations on power supplies haven’t changed. Only running one to three cards? You will probably be fine with one power supply. Going any higher and you will want two. Shoot for higher wattage power supplies (800+) and get a Y-Splitter.
CPU/RAM/Hard Drive
All of these can be generic. It doesn’t hurt to max these out, but they don’t really impact cracking performance. If you’re going to throw money around, throw it at your cards.
Here’s a pretty general parts and pricing list if you want to build your own.
Necessary cookies help make a website usable by enabling basic functions like page navigation and access to secure areas of the website. The website cannot function properly without these cookies.
Name
Domain
Purpose
Expiry
Type
YSC
youtube.com
YouTube session cookie.
52 years
HTTP
Marketing cookies are used to track visitors across websites. The intention is to display ads that are relevant and engaging for the individual user and thereby more valuable for publishers and third party advertisers.
Name
Domain
Purpose
Expiry
Type
VISITOR_INFO1_LIVE
youtube.com
YouTube cookie.
6 months
HTTP
Analytics cookies help website owners to understand how visitors interact with websites by collecting and reporting information anonymously.
We do not use cookies of this type.
Preference cookies enable a website to remember information that changes the way the website behaves or looks, like your preferred language or the region that you are in.
We do not use cookies of this type.
Unclassified cookies are cookies that we are in the process of classifying, together with the providers of individual cookies.
We do not use cookies of this type.
Cookies are small text files that can be used by websites to make a user's experience more efficient. The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies we need your permission. This site uses different types of cookies. Some cookies are placed by third party services that appear on our pages.
Cookie Settings
Discover why security operations teams choose NetSPI.